top of page

4 Books, 23 Book chapter, 86 research and review articles

Text Books on QSAR, CADD and Solar Cell

elsevier.JPG

3.   K. Roy, S. Kar, R. N. Das, Understanding the Basics of QSAR for Applications in Pharmaceutical Sciences and Risk Assessment, Academic Press (Elsevier), 2015, Link

springer.JPG

2.   K. Roy, S. Kar, R. N. Das, A Primer on QSAR/QSPR Modeling, Springer, 2015, Link

02.jpg

1.   J. K. Roy, S. Kar, J. Leszczynski, Development of Solar Cells – Theory and Experiment. Springer (2020). Link

Research and Review Articles

This section consists of Research, review, editorial, commentary articles covering CADD, Toxicity evaluation of Pharmaceuticals and Chemicals, Application of Cheminformatics in the field of Nanomaterials, Solar Cell design and development, Toxicity evaluation of mixtures, Risk assessment of endocrine disruptors, and development of new validation tools and metrics for QSAR

Contact
SARQSAR.JPG

77. V. Kumar, S. Kar, P. De, K. Roy, J. Leszczynski, Identification of Potential Antivirals against 3CLpro Enzyme for the Treatment of SARS-CoV-2: A Multi-step Virtual Screening Study. SAR and QSAR in Environmental Research, 2022, https://doi.org/10.1080/1062936X.2022.2055140

ARCHIVES.JPG

76. P. De, S. Kar, P. Ambure, K. Roy, Prediction Reliability of QSAR Models: An Overview of Various Validation Tools. Archives of Toxicology, 2022, doi: 10.1007/s00204-022-03252-y

Capture.JPG

75. S. Kar, J. Leszczynski, Computational Approaches in Assessments of Mixture Toxicity. Current Opinion in Toxicology, 2022, 29, 31-35 Link

Capture.JPG

74. Supratik Kar, Hans Sanderson, Kunal Roy, Emilio Benfenati and Jerzy Leszczynski. Green Chemistry in the Synthesis of Pharmaceuticals. Chemical Reviews. 2021, https://pubs.acs.org/doi/10.1021/acs.chemrev.1c00631

01.JPG

73.   A. Gajewicz-Skretna, S. Kar, M. Piotrowska, J. Leszczynski, Is the Kernel-weighted local polynomial regression (KwLPR) approach choice over the traditional regression tools to develop QSAAR models? Journal of Cheminformatics, 2021, 13, 9. Link

02.jpg

72.   S. Kar, K. Pathakoti, P.B. Tchounwou, D. Leszczynska, J. Leszczynski, Evaluating the cytotoxicity of a large pool of metal oxide nanoparticles to Escherichia coli: Mechanistic understanding through In Vitro and In Silico studies. Chemosphere, 2021, 264, 128428, Link

Capture.JPG

71.   K. Kapusta, S. Kar, JT Collins, LM Franklin, W Kolodziejczyk, J Leszczynski, GA Hill. Protein Reliability Analysis and Virtual Screening of Natural Inhibitors for SARS-CoV-2 Main Protease (Mpro) Through Docking, Molecular Mechanic & Dynamic, and ADMET Profiling. Journal of Biomolecular Structure and Dynamics, 2020. Link

02.jpg

70.   R. Ghosh, A. R. Cingreddy, V. Melapu, S. Joginipelli, S. Kar. Application of Artificial Intelligence and Machine Learning Techniques in Classifying Extent of Dementia Across Alzheimer's Image Data. International Journal of Quantitative Structure-Property Relationships, 2021, 6(2), 29-46. Link

Capture.JPG

69.   A. R. Cingireddy, R. Ghosh, S. Kar, V. Melapu, S. Joginipeli, J. Leszczynski. Preliminary Screening of COVID-19 Infection Employing Machine Learning Techniques From Simple Blood Profile. International Journal of Quantitative Structure-Property Relationships, 2021, 6(3), 35-47. Link

Capture.JPG

68.   S.S. Chitikina, P. Buddiga, P.K. Deb, R. P. Mailavaram, K. N. Venugopala, A. B. Nair, B. Al-Jaidi, S. Kar, Synthesis and anthelmintic activity of some novel (E)-2-methyl/propyl-4-(2-(substitutedbenzylidene)hydrazinyl)-5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidines. Med Chem Res, 2020, 29, 1600–1610. Link

Capture.JPG

67.   P. K. Ojha, S. Kar, J. G. Krishna, K. Roy, J. Leszczynski, Therapeutics for COVID-19: From Computation to Practices -Where We are, Where We are Heading to, Molecular Diversity, 2021, 25, 625-659. Link

Capture.JPG

66.   S. Kar, J. Leszczynski, From animal to human– interspecies analysis provides novel way of ascertaining and fighting COVID-19, The Innovation (Cell Press), 2020, 1, 100021. Link

Capture.JPG

65.   S. Kar, J. Leszczynski, Open Access In Silico Tools to Predict the ADMET Profiling of Drug Candidates, Expert Opinion on Drug Discovery, 2020, Link

Capture.JPG

64.   J. K. Roy, S. Kar, J. Leszczynski, Revealing the Photophysical Mechanism of N,N′-dialkyl/phenyl-aniline based Sensitizers with D–D–𝜋–A Framework: Theoretical Insights, ACS Sustainable Chemistry & Engineering, 2020, 8, 35, 13328–13341. Link

Capture.JPG

63.   S. Kar, J. Leszczynski, Is Intraspecies QSTR Model Answer to Toxicity Data Gap Filling: Ecotoxicity Modeling of Chemicals to Avian Species, Science of the Total Environment, 2020, 738, 139858. Link

Capture.JPG

62.   V. Uppar, S. Chandrashekharappa, K. N. Venugopala, P. K. Deb, S. Kar, O. I. Alwassil, R. M. Gleiser, D. Garcia, B. Odhav, M. K. Mohan, R. Venugopala, B. Padmashali. Synthesis and characterization of pyrrolo[1,2-a]quinoline derivatives for their larvicidal activity against Anopheles arabiensis, Structural Chemistry, 2020, 31, 1533–1543. Link

Capture.JPG

61.   J. G. Krishna, P. K. Ojha, S. Kar, K. Roy, J. Leszczynski, Chemometric modeling of power conversion efficiency of organic dyes in dye sensitized solar cells for the future renewable energy, Nano Energy, 2020, 70, 104537. Link

Capture.JPG

60.   S. Kar, H. Sanderson, K. Roy, E. Benfenati, J. Leszczynski, Ecotoxicological assessment of pharmaceuticals and personal care products using predictive toxicology approaches, Green Chemistry, 2020, 22, 1458-1516. Link

Capture.JPG

59.    M. Khan, S. Kar, J. Wang, J. Leszczynski, Theoretical Study of Formate, Tartrate, Tartronate and Glycolate Production from 6-Carbon Trioxylate Intermediate in the Citric Acid Cycle, Journal of Molecular Modeling, 2019, 25, 347. Link

Capture.JPG

58.    S. Ghosh, S. Kar, J. Leszczynski, Chemometric Modeling of Ecotoxicity of Endocrine Disruptors to an Avian Species Anas platyrhynchos. International Journal of Quantitative Structure-Property Relationships, 2020, 5(2), 1-16. Link

Capture.JPG

57.    J. K. Roy, S. Kar*, J. Leszczynski*, Optoelectronic Properties of C60 and C70 Fullerene Derivatives: Designing and Evaluating Novel Candidates for Efficient P3HT Polymer Solar Cells, Materials, 2019, 12, 2282; Link

Capture.JPG

56.    R. P. Mailavaram, O. H. Ahmed Al-Attraqchi, S. Kar*, S. Ghosh, Current Status in the Design and Development of Agonists and Antagonists of Adenosine A3 Receptor as Potential Therapeutic Agents. Current Pharmaceutical Design, 2019, 25(25), 2772-2787. Link

Capture.JPG

55.    G. Hoover, S. Kar, S. Guffey, J. Leszczynski, Maria S. Sepúlveda, In vitro and in silico modeling of perfluoroalkyl substances mixture toxicity in an amphibian fibroblast cell line. Chemosphere, 2019, 233, 25-33. Link

Capture.JPG

54.    P. N. Samanta, S. Kar, J. Leszczynski, Recent Advances of In-Silico Modeling of Potent Antagonists for the Adenosine Receptors, Current Pharmaceutical Design, 2019, 25(7), 750-773. Link

Capture.JPG

53.    S. Kar, J. Leszczynski, Exploration of Computational Approaches to Predict the Toxicity of Chemical Mixtures, Toxics, 2019, 7, 15. Link

Capture.JPG

52.    J. K. Roy, S. Kar, J. Leszczynski, Electronic Structure and Optical Properties of Designed Photo Efficient Indoline Based Dye-sensitizers with D-A-π-A Framework. Journal of Physical Chemistry C, 2019, 123, 3309−3320, Link

Capture.JPG

51.    S. Kar, S. Ghosh, J. Leszczynski, Is clay-Polycation Adsorbent Future of the Greener Society? In Silico Modeling Approach with Comprehensive Virtual Screening. Chemosphere, 2019, 220, 1108-1117. Link

Capture.JPG

50.    J. Jean, S. Kar, J. Leszczynski, Risk assessment of environmental contaminants through QSAR modeling of important PBTK parameter: A data gap filling approach, Environment International, 2018, 121, 1193-1203. Link

Capture.JPG

49.    P. De, S. Kar, K. Roy, J. Leszczynski, Second Generation Periodic Table Based Descriptors to Encode Toxicity of Metal Oxide Nanoparticles to Multiple Species: QSTR Modeling for Exploration of Toxicity Mechanisms. Environmental Science: Nano, 2018, 5, 2742-2760. Link

Capture.JPG

48.    K. Roy, P. Ambure, S. Kar, How precise are our QSAR derived predictions for new query chemicals?. ACS Omega, ACS Omega, 2018, 3 (9), pp 11392-11406. Link

Capture.JPG

47.    K. Khan, S. Kar, H. Sanderson, K. Roy, J. Leszczynski, Ecotoxicological Modeling, Ranking and Prioritization of Pharmaceuticals Using QSTR and i-QSTTR Approaches: Application of 2D and Fragment Based Descriptors. Molecular Informatics. 2018, 37, 1800078, Link

Capture.JPG

46.    P. K. Ojha, S. Kar, K. Roy, J. Leszczynski, Towards Comprehension of Multiple Human Cells Uptake of Engineered Nano Metal Oxides: Quantitative Inter Cell Line Uptake Specificity (QICLUS) modeling. Nanotoxicology, 2019,13, 14-34. Link

Capture.JPG

45.    S. Kar, S. Ghosh, J. Leszczynski, Single or Mixture Halogenated Chemicals? Risk Assessment and Developmental Toxicity Prediction on Zebrafish Embryos Based on Weighted Descriptors Approach. Chemosphere, 2018, 210, 588-596. Link

Capture.JPG

44.    J. K. Roy, S. Kar, J. Leszczynski, Insight into the optoelectronic properties of designed efficient tetrahydroquinoline dye-sensitizers on TiO2(101) surface for solar cells: first principles approach. Nature Scientific Reports, 2018, 8: 10997. Link

Capture.JPG

43.    K. Roy, P. Ambure, S. Kar, P. K. Ojha. Is it possible to improve the quality of predictions from an “intelligent” use of multiple QSPR/QSAR models? Journal of Chemometrics, 2018, 32, e2992. Link

Capture.JPG

42.    N. Sizochenko, S. Kar, M. Syzochenko, J. Leszczynski. Predicting Thermal Conductivity Enhancement of Al2O3/water and CuO/water Nanofluids Using Quantitative Structure-Property Relationship Modeling. International Journal of Quantitative Structure-Property Relationships, 2018, 4(1), 18-27. Link

Capture.JPG

41.     S. Kar, M. S. Sepulveda, K. Roy, J. Leszczynski, Endocrine-disrupting activity of poly- and perfluorinated chemicals: Exploring combined approaches of ligand and structure-based modeling. Chemosphere, 2017, 184, 514-523. Link

Capture.JPG

40.    S. Kar, J. K. Roy, J. Leszczynski. Using Todays Innovative Approaches to Assure Renewable Energy for Future: In silico Designing of Power Conversion Efficient Organic Lead Dyes for Solar Cells. Nature Partner Journal Computational Materials. 2017, 3(22), 1-12. Link

Capture.JPG

39.    L. S. Petrosyan, S. Kar, J. Leszczynski, B. Rasulev. Exploring simple, interpretable and predictive QSPR model of fullerene C60 solubility in organic solvents. Journal of Nanotoxicology and Nanomedicine, 2017, 2(1), 28-43. Link

Capture.JPG

38.    L. Ahmed, B. Rasulev, S. Kar, J. Leszczynski, Inhibitors or toxins? Large library target-specific screening of fullerene-based nanoparticles for drug design purpose. Nanoscale, 2017, 9, 10263-10276. Link

Capture.JPG

37.    S. Kar, J. Leszczynski. Recent Advances of Computational Modeling for Predicting Drug Metabolism: A perspective. Current Drug Metabolism, 2017, 18(12), 1106-1122.
Link

Capture.JPG

36.    K. Jagiello, A. Sosnowska, S. Kar, S. Demkowicz, M. Daśko, J. Leszczynski, J. Rachon, T. Puzyn. Geometry optimization of steroid sulfatase (STS) inhibitors - the influence on their binding energy with STS. Structural Chemistry, 2017, 28(4), 1017-1032. Link

Capture.JPG

35.    S. Kar, J. K. Roy, D. Leszczynska, J. Leszczynski, Power Conversion Efficiency of Arylamine Organic dyes for Dye-Sensitized Solar Cells (DSSCs) explicit to Cobalt Electrolyte: Understanding the Structural Attributes Using Direct QSPR Approach. Computation, 2017, 5(1), 2. Link

Capture.JPG

34.    W. Kolodziejczyk, S. Kar, G. A. Hill, Conformational analysis, energy profile and structural-electronic properties evaluation of Mephedrone derivatives employing quantum-mechanical models. Structural Chemistry, 2017, 28(3), 791-799. Link

Capture.JPG

33.    S. Kar, N. Sizochenko, L. Ahmed, V. S. Batista, J. Leszczynski, Quantitative Structure-Property Relationship Model Leading to Virtual Screening of Fullerene Derivatives: Exploring Structural Attributes Critical for Photoconversion Efficiency of Polymer Solar Cell Acceptors. Nano Energy, 2016, 26, 677-691. Link

Capture.JPG

32.    W. Kolodziejczyk, S. Kar, G. A. Hill, J. Leszczynski, A comprehensive computational analysis of cathinone and its metabolites using quantum mechanical approaches and docking studies. Structural Chemistry, 2016, 27, 1291-1302. Link

Capture.JPG

31.    S. Kar, A. Gajewicz, K. Roy, J. Leszczynski, T. Puzyn, Extrapolating between toxicity endpoints of metal oxide nanoparticles: Predicting toxicity to Escherichia coli and human keratinocyte cell line (HaCaT) with Nano-QTTR. Ecotoxicology and Environmental Safety, 2016, 126, 238-244. Link

Capture.JPG

30.    S. Kar, R. N. Das, K. Roy, J. Leszczynski, Can toxicity for different species be correlated? The concept and emerging applications of interspecies Quantitative Structure-Toxicity Relationship (i-QSTR) modeling. International Journal of Quantitative Structure-Property Relationships, 2016, 1(2), 22-51. Link

Capture.JPG

29.    K. Roy, S. Kar, P. Ambure, On a simple approach for determining applicability domain of QSAR models. Chemometrics and Intelligent Laboratory System, 2015, 145, 22-29. Link

Capture.JPG

28.    S. Kar, A. Gajewicz, T. Puzyn, K. Roy, J. Leszczynski, Periodic table-based descriptors to encode cytotoxicity profile of metal oxide nanoparticles: A mechanistic QSTR approach. Ecotoxicology and Environmental Safety, 2014, 107, 162-169. Link

Capture.JPG

27.    K. Roy, S. Kar, The rm2 metrics and regression through origin approach: reliable and useful validation tools for predictive QSAR models (Commentary on 'Is regression through origin useful in external validation of QSAR models?'). European Journal of Pharmaceutical Sciences, 2014, 62, 111-114. Link

Capture.JPG

26.    S. Kar, K. Roy, Quantification of contributions of molecular fragments for eye irritation of organic chemicals using QSAR study. Computer in Biology and Medicine, 2014, 48, 102-108. Link

Capture.JPG

25.    S. Kar, K. Roy, Predictive toxicity modeling of benzodiazepine drugs using multiple in silico approaches: Descriptor-based QSTR, Group-based QSTR and 3D-toxicophore mapping. Molecular Simulation, 2015, 41, 345-355. Link

Capture.JPG

24.     S. Kar, A. Gajewicz, T. Puzyn, K. Roy, Nano-Quantitative Structure-Activity Relationship Modeling Using Easily Computable and Interpretable Descriptors for Uptake of Magnetofluorescent Engineered Nanoparticles in Pancreatic Cancer Cells. Toxicol in vitro, 2014, 28, 600-606, Link

Capture.JPG

23.    P. Ambure, S. Kar, K. Roy, Pharmacophore Mapping-Based Virtual Screening Followed by Molecular Docking Studies in Search of Potential Acetylcholinesterase Inhibitors as Anti-Alzheimer's Agents. Biosystems, 2014, 116, 10-20. Link

Capture.JPG

22.    S. Kar, K. Roy, Predictive Chemometric Modeling and Three-Dimensional Toxicophore Mapping of Diverse Organic Chemicals Causing Bioluminescent Repression of the Bacterium Genus Pseudomonas. Industrial Engginering and Chemistry Research, 2013, 52, 17648-17657. Link

Capture.JPG

21.    A. Nandy, S. Kar, K. Roy, Development and validation of regression based QSAR models for quantification of contributions of molecular fragments to skin sensitization potency of diverse organic chemicals. SAR and QSAR in Environmental Research, 2013, 24, 1009-1023. Link

Capture.JPG

20.    A. Nandy, S. Kar, K. Roy, Development of classification and regression based QSAR models and in silico screening of skin sensitization potential of diverse organic chemicals. Molecular Simulation, 2014, 40, 261-274. Link

Capture.JPG

19.    S. Kar, K. Roy, Prediction of milk/plasma concentration ratios of drugs and environmental pollutants using in silico tools: Classification and regression based QSARs and pharmacophore mapping. Molecular Informatics, 2013, 32, 693-705. Link

Capture.JPG

18.    S. Kar, K. Roy, How far can virtual screening take us in drug discovery? Expert Opinion and Drug Discovery, 2013, 8, 245-261. Link

Capture.JPG

17.    K. Roy, P. Chakraborty, I. Mitra, P. K. Ojha, S. Kar, R. N. Das, Some case studies on application of “rm2” metrics for judging quality of QSAR predictions: Emphasis on scaling of response data. Journal Computational Chemistry, 2013, 34, 1071-1082. Link

Capture.JPG

16.    S. Kar, K. Roy, Prediction of hERG potassium channel blocking actions using combination of classification and regression based models: A mixed descriptors approach. Molecular Informatics, 2012, 31, 879-894. Link

Capture.JPG

15.    S. Kar, K. Roy, First report on predictive chemometric modeling, 3D-toxicophore mapping and in silico screening of in vitro basal cytotoxicity of diverse organic chemicals. Toxicology in Vitro, 2013, 27, 597-608. Link

Capture.JPG

14.     A. Nandy, S. Kar, K. Roy, Linear discriminant analysis for skin sensitization potential of diverse organic chemicals. Molecular Simulation, 2013, 39, 432-441. Link

Capture.JPG

13.     P. K. Ojha, I. Mitra, S. Kar, R. N. Das, K. Roy, Lead hopping for PfDHODH inhibitors as antimalarials based on pharmacophore mapping, molecular docking and comparative binding energy analysis (COMBINE): A three-layered virtual screening approach. Molecular Informatics, 2012, 31, 711-718. Link

Capture.JPG

12.    S. Kar, K. Roy, QSAR of phytochemicals for the design of better drugs. Expert Opinion and Drug Discovery, 2012, 7, 877-902. Link

Capture.JPG

11.     K. Roy, I. Mitra, P. K. Ojha, S. Kar, R. N. Das, H. Kabir, Introduction of rm2(rank) metric incorporating rank-order predictions as an additional tool for validation of QSAR/ QSPR models. Chemometrics and Intelligent Laboratory System, 2012, 118, 200-210, Link

Capture.JPG

10.    S. Kar, O. Deeb, K. Roy , Development of classification and regression based QSAR models to predict rodent carcinogenic potency using oral slope factor. Ecotoxicology and Environmental Safety, 2012, 82, 85-95, Link

Capture.JPG

9.     K. Roy, I. Mitra, S. Kar, Probir Ojha, R. N. Das, Humayun Kabir, Comparative studies on some metrics for external validation of QSPR models. Journal of Chemical Information and Modeling, 2012, 52, 396-408. Link

Capture.JPG

8.    S. Kar, K. Roy, First report on development of quantitative interspecies structure-carcinogenicity relationship models and exploring discriminatory features for rodent carcinogenicity of diverse organic chemicals using OECD guidelines. Chemosphere, 2012, 87, 339-355. Link

Capture.JPG

7.     S. Kar, K. Roy, Risk Assessment for Ecotoxicity of Pharmaceuticals - An Emerging Issue. Expert Opinion and Drug Safety, 2012, 11, 235-274. Link

Capture.JPG

6.   S. Kar, K. Roy, Development and validation of a robust QSAR model for prediction of carcinogenicity of drugs. Indian Journal of Biochemistry and Biophysics, 2011, 48, 111-122. Link

Capture.JPG

5.     S. Kar, K. Roy, Predictive toxicology using QSAR: A perspective. J Indian Chem Society, 2010, 87, 1455-1515.

Capture.JPG

4.      I. Mitra, Partha Pratim Roy, S. Kar, Probir Ojha, K. Roy, On further application of rm2 as a metric for validation of QSAR models. Journal of Chemometrics, 2010, 24, 22-33. Link

Capture.JPG

3.    S. Kar, K. Roy, First report on interspecies quantitative correlation of ecotoxicity of pharmaceuticals. Chemosphere, 2010, 81, 738-747. Link

Capture.JPG

2.    S. Kar, A. P. Harding, K. Roy, PLA Popelier, QSAR with Quantum Topological Molecular Similarity Indices: Toxicity of Aromatic Aldehydes to Tetrahymena pyriformis. SAR and QSAR in Environmental Research, 2010, 21, 149-168. Link

Capture.JPG

1.    S. Kar, K. Roy, QSAR modeling of toxicity of diverse organic chemicals to Daphnia magna using 2D and 3D descriptors. Journal of Hazardous Material, 2010, 177, 344-351. Link

Book Chapters

istockphoto-1181378326-612x612.jpg

18.    S. Kar, J. Leszczynski, Chemometric Modeling of Emerging Materials for the Removal of Environmental Pollutants. In: Emerging Materials and Environment, (M.K. Shukla, E. Ferguson, J. Leszczynski, Eds), Springer, (2021). (In press)

Presentation1.jpg

17.   S. Kar, J. Leszczynski, QSAR and Machine Learning Modeling of Nanomaterials Toxicity: A Risk Assessment Approach. In: Health and Environmental Safety of Nanomaterials, (James Njuguna, Ed), 2nd Edn., Elsevier (2021), pp. 417-441.

Link

istockphoto-1181378326-612x612.jpg

16.   H. Sanderson, P. M. Khan, S. Kar, K. Roy, A. Magdalene, B. Hansen, K, Connors, S, Belanger, QSAR modeling of aquatic toxicity of cationic polymers. In: Chemometrics and Cheminformatics in Aquatic Toxicology, (K. Roy, Ed), Wiley (2021), (In press)

istockphoto-1181378326-612x612.jpg

15.    S. Kar, J. Leszczynski, Aquatic toxicology databases. In: Chemometrics and Cheminformatics in Aquatic Toxicology, (K. Roy, Ed), Wiley (2021), (In press)

Presentation1.jpg

14.    S. Kar, J. K. Roy, J. Leszczynski, Application of QSPR Modeling in Designing and Prediction of Power- Conversion Efficient Solar Cell. In: Development of Solar Cells – Theory and Experiment, (J. K. Roy, S. Kar, J. Leszczynski, Ed.), Springer (2021), pp. 167-186. Link

Presentation1.jpg

13.    J. K. Roy, S. Kar, J. Leszczynski, Computational Screening of Organic Dye-sensitizers for Dye-sensitized Solar Cells: DFT/TDFT Approach. In: Development of Solar Cells – Theory and Experiment, (J. K. Roy, S. Kar, J. Leszczynski, Ed.), Springer (2021), pp. 187-205. Link

Presentation1.jpg

12.    S. Kar, J. Leszczynski. Drug Databases for Development of Therapeutics Against Coronaviruses. In: In Silico Modeling of Drugs Against Coronaviruses - Computational Tools and Protocols, (K. Roy, Ed). Methods in Pharmacology and Toxicology Series, Springer, New York, NY (2021). Link

Presentation1.jpg

11.   P. M. Khan, S. Kar, K. Roy, Ecotoxicological QSARs of Mixtures. In: Ecotoxicological QSARs, (K. Roy, Ed), springer Protocols, Humana Press (2020), pp. 437-475. Link

Presentation1.jpg

10.    S. Ghosh, S. Kar, J. Leszczynski, Ecotoxicity Databases for QSAR Modeling. In: Ecotoxicological QSARs, (K. Roy, Ed), springer Protocols, Humana Press (2020), pp. 709-758. Link

Presentation1.jpg

9.    S. Kar, K. Roy, J. Leszczynski, Introspection of Pharmaceuticals Ecotoxicity from the Viewpoint of In Silico Modeling. In: Computational Toxicology: Methods and Protocols, Methods in Molecular Biology, vol. 1800, (O. Nicolotti, Ed), Springer Nature (2018), pp. 141-169. Link

Presentation1.jpg

8.    S. Kar, K. Roy, J. Leszczynski, Applicability Domain: A Step Towards Confident Predictions and Decidability for QSAR Modeling. In: Computational Toxicology: Methods and Protocols, Methods in Molecular Biology, vol. 1800, (O. Nicolotti, Ed), Springer Nature (2018), pp. 395-443. Link

Presentation1.jpg

7.    S. Kar, K. Roy, J. Leszczynski, On error measures for validation, and uncertainty estimation of predictive QSAR models. In: Computational Nanotoxicology: Challenges, pitfalls and perspectives, (Agnieszka Gajewicz & Tomasz Puzyn, Eds), Pan Stanford Publishing, 2020, pp. 401-435. Link

Presentation1.jpg

6.    S. Kar, S. Ghosh, J. Leszczynski, Computational Methods of Interspecies Nanotoxicity Extrapolation. In: Computational Nanotoxicology: Challenges, pitfalls and perspectives, (A. Gajewicz & T. Puzyn, Eds), Pan Stanford Publishing, 2020, pp. 437-493. Link

Presentation1.jpg

5.    S. Kar, K. Roy, J. Leszczynski, On Application QSARs in Food and Agricultural Sciences: History and Recent Developments. In: Advances in QSAR modeling with Applications in Pharmaceutical, Chemical, Food, Agricultural and Environmental Sciences, (K. Roy, Ed), under the book series "Challenges and Advances in Computational Chemistry and Physics" (Series Ed: J. Leszczynski), Volume 24, Springer, 2017, 203-302. Link

benfenati.jpg

4.    K. Roy, S. Kar, In Silico Models for Ecotoxicity of Pharmaceuticals. In: In Silico Methods for Predicting Drug Toxicity, Methods in Molecular Biology, Vol. 1425 (Benfenati E, Ed), Springer, 2016, pp. 237-304. Link

rm2.jpg

3.    K. Roy, S. Kar, The rm2 metrics for validation of QSAR/QSPR models. In: "Handbook of Research on Chemometrics: QSAR in Medicinal Chemistry (Vol I)". Eds. P. R. Duchowicz, P. M. Sivakumar, A. Mercader, Apple Academic Press, worldwide distributed by CRC Press, a Taylor & Francis Group, (2015), pp. 101-128. Link

igi ad.jpg

2.   K. Roy, S. Kar, Importance of Applicability Domain of QSAR Model. In: Quantitative Structure-Activity Relationships in Drug Design, Predictive Toxicology, and Risk Assessment. Ed. K. Roy, IGI Global, PA, Chapter 5, 2015, pp. 181-212. Link

01.JPG

1.   K. Roy, S. Kar, How to judge predictive quality of classification and regression based QSAR models?. In: Frontiers in Computational Chemistry. Eds. Z. Haq and J. D. Madura, Bentham Science Publishers, Chapter 3 in Vol. 2, 2015, pp. 71-120. Link

bottom of page